中国血液净化 ›› 2025, Vol. 24 ›› Issue (10): 834-837,852.doi: 10.3969/j.issn.1671-4091.2025.10.009

• 综述 • 上一篇    下一篇

机器学习在腹膜透析并发症风险预测模型中的研究进展

刘欣悦   姜改英   王晓娟   王菊子   左妙荷   刘志艳   

  1. 030001 太原,1山西医科大学护理学院
    030012 太原,山西省人民医院2肾内科 3护理部
    030619 太原,4山西中医药大学护理学院
  • 收稿日期:2025-01-09 修回日期:2025-05-27 出版日期:2025-10-12 发布日期:2025-10-12
  • 通讯作者: 姜改英 E-mail:jianggaiying@163.com
  • 基金资助:
    慢性肾脏病患者营养管理方案的构建及应用(2024029)

Research progress of machine learning in risk prediction models for peritoneal dialysis complications

LIU Xin-yue, JIANG Gai-ying, WANG Xiao-juan, WANG Ju-zi, ZUO Miao-he, LIU Zhi-yan   

  1. School of Nursing, Shanxi Medical University, Taiyuan 030001, China; 2Department of Nephrology and 3Department of Nursing, Shanxi Provincial People's Hospital, Taiyuan 030012, China; 4School of Nursing, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
  • Received:2025-01-09 Revised:2025-05-27 Online:2025-10-12 Published:2025-10-12
  • Contact: 030012 太原,2山西省人民医院肾内科 E-mail:jianggaiying@163.com

摘要: 终末期肾病(end stage renal disease,ESRD)患者持续增长,腹膜透析(peritoneal dialysis, PD)因其居家治疗的特性,为患者提供更为便捷的选择。但其引发的感染性和非感染性并发症严重影响患者生活质量和生存率。因此,准确预测PD患者并发症风险并及时干预至关重要。机器学习(machine learning,ML)构建预测模型能够预估个体患病概率,其分支深度学习(deep learning,DL)通过多层神经网络结构,能自动从原始数据中学习深层次特征,预测准确性和效率更高。本文综述了ML及其子学科的基本概念,阐述ML在PD并发症风险预测中的应用,通过总结最新研究进展,为未来PD患者并发症管理提供借鉴。

关键词: 机器学习, 腹膜透析, 风险预测模型

Abstract: The rising prevalence of end-stage renal disease (ESRD) promotes the application of peritoneal dialysis (PD), a therapeutic option to conveniently conduct at home. However, PD-associated infectious and non-infectious complications occur frequently. Early and precise prediction and management of PD-associated complications are therefore critical to quality of life and outcome of the patients. The risk prediction models based on machine learning can evaluate the complication risk of a patient; while its branch, the deep machine learning, can automatically extract hierarchical features from raw data with higher accuracy and efficiency through multi-layer neural network structures. This review summarizes the basic concepts of machine learning and its branch deep machine learning, their utility in PD complication prediction and recent research advances to provide references for complication management in PD patients.

Key words: Machine learning, Peritoneal dialysis, Risk prediction model

中图分类号: