中国血液净化 ›› 2025, Vol. 24 ›› Issue (12): 984-987,1014.doi: 10.3969/j.issn.1671-4091.2025.12.004

• 临床研究 • 上一篇    下一篇

血液透析患者透析后疲劳的同期症状网络分析

田碧文,杨小莹,田志武,李辉文   

  1. 519000 珠海,1中山大学附属第五医院肾内科
  • 收稿日期:2025-04-25 修回日期:2025-10-02 出版日期:2025-12-12 发布日期:2025-12-12
  • 通讯作者: 杨小莹 E-mail:287474050@qq.com

Concurrent symptom network analysis of post-dialysis fatigue in hemodialysis patients

TIAN Bi-wen, YANG Xiao-ying, TIAN Zhi-wu, LI Hui-wen   

  1. Department of Nephrology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
  • Received:2025-04-25 Revised:2025-10-02 Online:2025-12-12 Published:2025-12-12
  • Contact: 519000 珠海,1中山大学附属第五医院肾内科 E-mail:287474050@qq.com

摘要: 目的  探讨血液透析(hemodialysis,HD)患者透析后疲劳(post dialysis fatigue,PDF)的同期症状网络特征,识别核心症状及相互作用机制,为制定精准化症状管理方案提供依据。 方法  采用横断面研究设计,便利抽样选取2021年6月—9月中山大学附属第五医院维持性血液透析患者为研究对象。使用透析后疲劳量表评估症状,通过因子分析提取症状群,基于高斯图模型(EBICglasso)构建症状网络,分析核心症状及网络稳定性。 结果  共纳入147例患者。因子分析提取4个症状群(抑郁倾向、躯体疼痛、全身性衰弱、心肺-代谢症状),累计方差贡献率为70.90%。症状网络分析显示包含13个节点及36条边,稀疏性指数为0.538。核心症状为缺乏食欲(强度=1.793),Bootstrap检验证实网络结构稳定[边中心性稳定性系数(correlation stability coefficient,CS-C)>0.75,中心性CS-C>0.5]。  结论  HD患者PDF呈现多维症状交互网络特征,缺乏食欲为核心驱动症状。临床干预需关注营养管理,结合多维度症状协同干预策略,改善患者生活质量。

关键词: 血液透析, 透析后疲劳, 症状网络分析, 核心症状, 营养管理

Abstract: Objective  To explore the concurrent symptom network characteristics of post-dialysis fatigue (PDF) in hemodialysis (HD) patients, identify the core symptoms and their interaction mechanisms, and thereby provide a basis for formulating precise symptom management strategies.  Methods A cross-sectional study design was adopted. Convenience sampling was used to select maintenance hemodialysis patients from the Fifth Affiliated Hospital of Sun Yat-sen University between June and September 2021 as the study subjects. The Post-Dialysis Fatigue Scale was used to assess symptoms. Factor analysis was used to extract symptom clusters, and a symptom network was constructed based on the Gaussian graphical model (EBICglasso) to analyze core symptoms and network stability.  Results  A total of 147 patients were included. Factor analysis extracted 4 symptom clusters (depressive tendency, somatic pain, general debilitation, cardiopulmonary-metabolic symptoms), with a cumulative variance contribution rate of 70.90%. Symptom network analysis revealed a network containing 13 nodes and 36 edges, with a sparsity index of 0.538. The core symptom was lack of appetite (strength=1.793). Bootstrap testing confirmed the stability of the network structure [edge centrality stability coefficient (CS-C) > 0.75, centrality CS-C > 0.5].  Conclusion  PDF in HD patients exhibits characteristics of a multidimensional symptom interaction network, with lack of appetite as the core driver. Clinical interventions should focus on nutritional management and adopt a multidimensional symptom co-intervention strategy to improve patients' quality of life.

Key words: Hemodialysis, Post-dialysis fatigue, Symptom network analysis, Core symptoms, Nutritional management

中图分类号: