中国血液净化 ›› 2026, Vol. 25 ›› Issue (01): 44-47.doi: 10.3969/j.issn.1671-4091.2026.01.010

• 综述 • 上一篇    下一篇

机器学习在动静脉内瘘狭窄诊断中的应用与研究进展

唐凯文    赵 乾    沈慧俐    刘慧敏    金学勤   

  1. 110122 沈阳,中国医科大学1护理学院 2公共卫生学院
    215300 昆山, 3昆山市第一人民医院护理部
  • 收稿日期:2025-05-29 修回日期:2025-07-21 出版日期:2026-01-12 发布日期:2025-12-31
  • 通讯作者: 金学勤 E-mail:1277690529@qq.com
  • 基金资助:
    苏州市医学重点扶持学科项目(SZFCXK202106)

Machine learning in the diagnosis and research of arteriovenous fistula stenosis

TANG Kai-wen, ZHAO Qian, SHEN Hui-li, LIU Hui-min, JIN Xue-qin   

  1. School of Nursing and 2School of Public Health, China Medical University, Shenyang 110122, China; 3Department of Nursing, The First People's Hospital of Kunshan, Suzhou 215300, China
  • Received:2025-05-29 Revised:2025-07-21 Online:2026-01-12 Published:2025-12-31
  • Contact: 215300 昆山, 3昆山市第一人民医院护理部 E-mail:1277690529@qq.com

摘要: 动静脉内瘘(arteriovenous fistula,AVF)狭窄是血液透析(hemodialysis,HD)患者血管通路功能障碍的主要原因,早期精准诊断对降低血栓风险、延长血管通路寿命至关重要。传统诊断方法存在侵入性、设备依赖性强等局限。机器学习通过正常与异常血流音频信号中提取和量化声学特征,建立识别标准,实现对AVF狭窄无创性和客观诊断。本文主要对机器学习联合4种诊断工具进行综述,阐释各方法与模型结合的原理、优势与挑战,以期为推动血管通路管理向精准医学的范式转变提供参考。

关键词: 动静脉内瘘狭窄, 机器学习, 诊断工具, 血液透析

Abstract: Arteriovenous fistula (AVF) stenosis is a leading cause of vascular access dysfunction in hemodialysis patients. Early and accurate diagnosis is crucial for reducing thrombotic risk and prolonging access lifespan. Traditional diagnostic methods have the limitation of invasiveness and the dependence of specific equipment. Machine learning enables non-invasive and objective diagnosis of AVF stenosis through extracting and quantifying acoustic features of normal and abnormal blood flow signals to establish recognition criteria. This article integrates machine learning with other four diagnostic tools to explain their principles, advantages and challenges, contributing to the shift toward precision medicine in vascular access management.

Key words: Arteriovenous fistula stenosis, Machine learning, Diagnostic tool, Hemodialysis

中图分类号: